Recent advances in coupling in the GFDL Flexible Modeling System

CW2015: 3rd Workshop on Coupling Technologies for Earth System Models
Manchester, UK

V. Balaji, Rusty Benson, Bruce Wyman, S-J. Lin, Alistair Adcroft and many others

NOAA/GFDL and Princeton University

20 April 2015
1. Towards exascale with Earth System models
2. Adapting ESM architecture for scalability
3. Concurrent radiation
4. Other issues
 - Concurrent nesting
 - Ice-ocean boundary
5. Summary
Outline

1. Towards exascale with Earth System models
2. Adapting ESM architecture for scalability
3. Concurrent radiation
4. Other issues
 - Concurrent nesting
 - Ice-ocean boundary
5. Summary
Climate modeling, a computational profile

- Intrinsic variability at all timescales from minutes to millennia; distinguishing natural from forced variability is a key challenge.
- Coupled multi-scale multi-physics modeling;
- Physics components have predictable data dependencies associated with grids;
- Adding processes and components improves scientific understanding;
- New physics and higher process fidelity at higher resolution;
- Ensemble methods to sample uncertainty (ICEs, PPEs, MMEs...)
- Algorithms generally possess weak scalability.

In sum, climate modeling requires long-term integrations of weakly-scaling I/O and memory-bound models of enormous complexity.
Earth System Model Architecture

Complexity, resolution, UQ: components can have their own grids, timesteps, algorithms, multiple concurrent instances.
The hardware jungle

Upcoming hardware roadmap looks daunting! GPUs, MICs, DSPs, and many other TLAs...

- Intel straight line: IvyBridge/SandyBridge, Haswell/Broadwell: “traditional” systems with threading and vectors.
- Intel knight’s move: Knights Corner, Knights Landing: MICs, thread/vector again, wider in thread space.
- Hosted dual-socket systems with GPUs: SIMD co-processors.
- BG/Q: CPU only with hardware threads, thread and vector instructions. No followon planned.
- ARM-based systems coming. (e.g with DSPs).
- FPGAs? some inroads in finance.
- Specialized processors: Anton for molecular dynamics, GRAPE for astrophysics.
The software zoo

Exascale using nanosecond clocks implies billion-way concurrency! It is unlikely that we will program codes with $10^6 - 10^9$ MPI ranks: it will be MPI+X. Solve for X . . .

- CUDA and CUDA-Fortran: proprietary for NVIDIA GPUs. Invasive and pervasive.
- OpenCL: proposed standard, not much penetration.
- ACC from Portland Group, now a new standard OpenACC.
- Potential OpenMP/OpenACC merging...?
- PGAS languages: Co-Array Fortran, UPC, a host of proprietary languages.
- Code generation:
 - Domain-specific languages (DSLs): e.g STELLA.
 - Source-to-source translators.
GFDL is taking a conservative approach:

- it looks like it will be a mix of MPI, threads, and vectors.
- Developing a three-level abstraction for parallelism: components, domains, blocks. Kernels work on blocks and must have vectorizing inner loops.
- Recommendation: sit tight, make sure MPI+OpenMP works well, write vector-friendly loops, reduce memory footprint, offload I/O.

Other concerns:
- Irreproducible computation
- Tools for analyzing performance.
- Debugging at scale.

Recent experience on Titan, Stampede and Mira reaffirm this approach. This talk will focus on coarse-grained parallelism at the component level.
1. Towards exascale with Earth System models

2. Adapting ESM architecture for scalability

3. Concurrent radiation

4. Other issues
 - Concurrent nesting
 - Ice-ocean boundary

5. Summary
Extending component parallelism to $O(10)$ requires a different physical architecture!
Serial coupling

Uses a forward-backward timestep for coupling.

\[A^{t+1} = A^t + f(O^t) \] \hspace{1cm} (1)

\[O^{t+1} = O^t + f(A^{t+1}) \] \hspace{1cm} (2)
Concurrent coupling

This uses a forward-only timestep for coupling. While formally this is unconditionally unstable, the system is strongly damped*. Answers vary with respect to serial coupling, as the ocean is now forced by atmospheric state from Δt ago.

\begin{align*}
A^{t+1} &= A^t + f(O^t) \\
O^{t+1} &= O^t + f(A^t)
\end{align*}
Components such as radiation, PBL, ocean biogeochemistry, each could run with its own grid, timestep, decomposition, even hardware. Coupler mediates state exchange.
1. Towards exascale with Earth System models

2. Adapting ESM architecture for scalability

3. Concurrent radiation

4. Other issues
 - Concurrent nesting
 - Ice-ocean boundary

5. Summary
The atmospheric radiation component computes radiative transfer of incoming shortwave solar fluxes and outgoing longwave radiation as a function of all radiatively active species in the atmosphere (greenhouse gases, aerosols, particulates, clouds, ...).

- The physics of radiative transfer is relatively well-known, but a full Mie-scattering solution is computationally out of reach.
- Approximate methods (sampling the “line-by-line” calculation into “bands”) have been in use for decades, and “standard” packages like RRTM are available.
- They are still very expensive: typically $\Delta t_{rad} > \Delta t_{phy}$ (in the GFDL models typically 9X). The model is sensitive to this ratio.
- Other methods: stochastic sampling of bands (Pincus and Stevens 2013), neural nets (Krasnopolsky et al 2005)

Challenge: can we exploit “cheap flops” to set $\Delta t_{rad} = \Delta t_{phy}$?
Traditional coupling sequence

Radiation timestep much longer than physics timestep.
(Figure courtesy Rusty Benson, NOAA/GFDL).
Proposed coupling sequence

Radiation executes on physics timestep from *lagged* state. (Figure courtesy Rusty Benson, NOAA/GFDL).
Requires MPI communication between physics and radiation. (Figure courtesy Rusty Benson, NOAA/GFDL).
Proposed coupling sequence: hybrid approach

Physics and radiation share memory.
(Figure courtesy Rusty Benson, NOAA/GFDL).
Results from climate run

20 year AMIP/SST climate runs have completed on Gaea (Cray XE6).

- Control: 9.25 sypd
 - $\Delta t_{rad} = 9\Delta t_{phy}$
 - 864 MPI-ranks / 2 OpenMP threads
- Serial Radiation: 5.28 sypd
 - $\Delta t_{rad} = \Delta t_{phy}$
 - 864 MPI-ranks / 2 OpenMP threads
- Concurrent Radiation: 5.90 sypd
 - $\Delta t_{rad} = \Delta t_{phy}$
 - 432 MPI-ranks / 4 OpenMP threads (2 atmos + 2 radiation)
 - Can get back to 9 sypd at about ~ 2700 cores (roughly 1.6X).

Comparison of Concurrent Radiation to Control

- climate is similar
- TOA balance is off by $\sim 4 \text{W/m}^2$, mostly in the short wave, but easily retuned when ready to deploy

Results presented at AMS (Benson et al 2015). Article in the works for GMD special issue on coupling.

V. Balaji (balaji@princeton.edu)
Outline

1. Towards exascale with Earth System models
2. Adapting ESM architecture for scalability
3. Concurrent radiation
4. Other issues
 - Concurrent nesting
 - Ice-ocean boundary
5. Summary
Lee vortices off Hawaii under two-way nesting

- 72 hr forecast from 1 Aug 2010 00Z with real topography
- Showing Vorticity $\times 10^5$

Figure courtesy Lucas Harris and S-J Lin, NOAA/GFDL.
Concurrent two-way nesting

Typical nesting protocols force serialization between fine and coarse grid timestepping, since the C^* are estimated by interpolating between C^n and C^{n+1}.

We enable concurrency by instead estimating the C^* by extrapolation from C^{n-1} and C^n, with an overhead of less than 10%. (See Harris and Lin 2012 for details.)
Sequential coupling

\[Q(\text{SST}, T_i, T_a), \tau(u_o, u_i, u_a) \]

\[\Delta t_{\text{coupled}} \]

Figure courtesy Alistair Adcroft, CICS and GFDL.
Concurrent coupling

Figure courtesy Alistair Adcroft, CICS and GFDL.

V. Balaji (balaji@princeton.edu) Component concurrency 20 April 2015 25 / 30
Ice-ocean boundary

Staggered-concurrent coupling

Figure courtesy Alistair Adcroft, CICS and GFDL.
Sequential coupling + Adams-Bashforth

\[Q(SST, T_o, T_a), \tau(u_o, u_i, u_a) \]

\[\text{SST}^*, u_o^* \]

Figure courtesy Alistair Adcroft, CICS and GFDL.
Ice-ocean boundary

Concurrent coupling + AB

Figure courtesy Alistair Adcroft, CICS and GFDL.
Staggered-concurrent coupling + AB

Figure courtesy Alistair Adcroft, CICS and GFDL.
Outline

1. Towards exascale with Earth System models
2. Adapting ESM architecture for scalability
3. Concurrent radiation
4. Other issues
 - Concurrent nesting
 - Ice-ocean boundary
5. Summary
The commodity computing era has taken us from the von Neumann model to the “sea of functional units” (Kathy Yelick’s phrase). Not easy to understand, predict or program performance.

... but the “free lunch” decades are over, they’ve come to take away your plates.

Coarse-grained parallelism is an area of research not to be forgotten in the current effort to reclaim performance from the encroaching “sea”.

The “component” abstraction still may let us extract some benefits out of the machines of this era:

- sharing of the wide thread space.
- distribute components among heterogeneous hardware?
- there are continuing concerns about stability, conservation, and accuracy.

Some of these results were presented at AMS earlier this year, and we are working on a submission to the GMD Special Issue.